Tag Archives: onions

Benchmarking Onions Year 3

The final year of our collaborative project with Plant and Food Research for OnionsNZ with support from the MPI Sustainable Farming Fund is underway.

This season we are linking with regional agronomists and farmers in Pukekohe/Pukekawa, Hawke’s Bay and Canterbury to further test the Management Action Zone tools.

One of the Pukekawa crops is most advanced and our mapping there starts very soon. Our aim is to map crops at 3 leaf stage, use that to identify canopy zones and take photos in each zone for detailed analysis.

The ground area calculated from the photos is added to plant population counts and run through a crop development model on SmartFarm.co.nz to predict final yield in each zone. The model also identifies if population of plant growth rate are causing lower than expected development, and therefore yield.

This field is almost ready for the first mapping exercise. We are somewhat nervous because the weeds can cause errors: green is green! Sometimes we can filter the weeds out of the images, but if there is very little difference between weed and onion, it is not yet possible.

The MicroFarm crop has started to emerge in recent days. We are keeping an eye on this to see what impact emergence has later.

Onion Crop Development

The crop at the MicroFarm is showing increasing variability.  The cause of some is understood, essentially excessive water pre-germination.  But in some poor performing areas the causes have yet to be determined.

The effect of our artificially applied rain event pre-emergence is clearly evident in late November.

The lasting effect of a heavy (artificial) rain event pre-emergence (right panel) shows low population and poor growth compared to areas without heavy rain (left panel)
The lasting effect of a heavy (artificial) rain event pre-emergence (right panel) shows low population and poor growth compared to areas without heavy rain (left panel)

However, we also see other areas that have poor crop development that are outside the area irrigated to create the artificial rain event.

Wide variation within the area new to onions does not follow artificial rain or topographic drainage patterns.
Wide variation within the area new to onions does not follow artificial rain or topographic drainage patterns.

Sharp differences in crop growth are evident in the new onion ground. Some parts that were heavily irrigated to simulate heavy rain show reasonable development. Areas that were not irrigated also show good development, but in some patches total crop loss.

Investigations of soil physical properties in these different areas are underway.

Onion Crops Sown

As part of our ongoing research project with Onions New Zealand, a new crop was sown on 6 September 2016.

Sowing onion seed at the MicroFarm
Sowing onion seed at the MicroFarm

Harvey from G & J Steenkamer planted the crop using Rhinestone seed donated by Vigour Seeds and treated for us by Seed and Field Services. We are very grateful for their continuing support.

We’ve aimed at a population of 580,000 plants/ha. With 8 rows in our 1.82m wide beds, we have seed at 72mm spacing in the row.

G& J Steenkamer sowing our onion crop.

After last harvest the beds, but not wheel tracks, were ripped to 450mm depth.  Autumn planted Caliente and oat cover crops were mulched and incorporated in late June and the ground left fallow.  Prior to sowing it was hoed and rolled.

Rain after planting had only minor impact, with a little soil capping in some areas.


Enhancing Value of New Zealand Onions

Onions New Zealand Research project


Dr Jane Adams
Research and Innovation Manager, Onions New Zealand Inc.

The New Zealand onion industry expects to further develop high value export markets, particularly in Asia, which could see its exports double to $200million by 2025. To realise these export opportunities the industry needs to improve efficiency and consistency of production and reliably supply high quality onions.

Currently industry average yields for brown onions vary between 33 and 50t/ha depending on season, which are significantly below demonstrated potential average yields of 100t/ha. Competition for productive land mean growers must maximise both productivity and crop value, while also meeting requirements to sustainably use resources and minimise environment impacts.

To help the industry achieve these objectives Onions New Zealand developed a project ‘Enhancing the profitability and value of NZ onions’, in collaboration with LandWISE Inc and Plant and Food Research, to understand causes of low yields and variable quality of onion crops and to develop tools to help growers monitor and manage crops. The project received additional funding from Ministry of Primary Industries Sustainable Farming Fund and commenced in July 2015.

In the first season of the project a crop of cv Rhinestone onions was grown on the LandWISE MicroFarm to allow easy access for both LandWISE and Plant and Food Research scientists to assess crop development and test methods and tools for monitoring the crop and environment at regular intervals.

Four monitoring zones were established across the trial paddock for detailed measurement of plant growth and crop development. Several tools and techniques were tested for obtaining digital data of site and crop attributes. 

An important part of the project is the involvement of local growers in discussion of progress results and use of monitoring tools and advice on crop management.  

MicroFarm Cover Crops Incorporated


Many thanks to Nicolle Contracting and True Earth Organics for getting our winter cover crops incorporated today.


This winter saw a repeat of last year’s split planting of Caliente Mustard and Oats to compare effects on soil, disease and plant growth. Seed was provided by True Earth Organics.

To gain benefit from the fumigant properties of the Caliente, it must be soil incorporated as soon as possible. This is why we have the two tractors closely following, one mulching the crop, the other incorporating the residues.

Mulching mustard - reasonable biomass, but some insect damage reducing leaf mass
Mulching mustard – reasonable biomass, but some insect damage reducing leaf mass
Mulching before incorporating oats

Onions are to be planted in this area for a third season in succession. Our onion crop will also include a new area that has never had onions planted before. As part of our collaboration with Onions New Zealand and Plant and Food Research, we will compare the performance of crops in the different areas.

Winter Cover Crops Established

This winter we have established both Caliente Mustard and Oats in paddocks 1 and 2, the site of our last two years of summer onions.

Oats and Mustard well established 12 days after drilling

The ground had not had onions before 2014-2015 as far as we know. We grew our second crop in succession in 2015-2016.

Our plan is to grow onions for a third year, and to pay attention to the development of weeds, pests and diseases. Plant and Food Research reported some evidence of “Pink Root” in a few plants while harvesting samples of the 2015-2016 crop.

After harvest, Gerry and John Steenkamer ripped the beds, leaving the wheel tracks. This is step 1 of a route into permanent bed cropping at the MicroFarm.

Unfortunately, the alignment of the main AB line for the entire block did not match the buried drip irrigation installed some years ago, and it has been damaged beyond repair.

Mike Kettle Contracting drilling oats and mustard
Mike Kettle Contracting drilling oats and mustard

After ripping, Mike Kettle Contracting power harrowed the paddocks to about 100mm to reduce the rubbley surface. The Caliente and Oats were drilled by Kettle Contracting on 16 March.

We chose a split-paddock planting, with Caliente on the northern side and oats on the south. This repeats last winter’s pattern, so we will have two years of onions followed by either Caliente or Oats when we establish the 2016-2017 crop.

Caliente emerging on 23 March, 7 days after planting
Oats emerging on 23 March, 7 days after planting

Many thanks to True Earth Organics for supplying the Caliente seed, and to G & J Steenkamer and Mike Kettle for groundwork and drilling.


Onion Crop Harvested

The MicroFarm onion crop was lifted on 3rd February and harvested on 13th February prior to promised rain.  Many thanks to Gerry and John Steenkamer for providing equipment and staff to do these tasks.

We don’t have final yields yet, but the load out was about 70 tonnes per hectare.

Here is a simple photo essay showing some of the scenes from the ground and from our UAV.


Lifting DSC_4997_web








And off to the packhouse


Scouting by Consumer UAV

Consumer UAVs are increasingly seen as farm tools.  Some come with camera and packaged tech for easy flying, pretty much straight out of the box.

But before you leap in, please be aware there are RULES.

We suggest you spend time on the AirShare www.airshare.co.nz and CAA www.caa.govt.nz/rpas/ websites before you get started.  Designed specifically for UAV users they have easy to digest information setting out what you can and cannot do.

DJI Phantom 3

Our package came with all equipment, an extra battery and optional propeller guards packed in a tough custom carry case.  The camera is on a gimbal for steady shots, panning and tilting. Zoom in by getting closer!

A downloaded smartphone or tablet app shows flight information such as height, position and battery charge and lets you see exactly what the camera sees with no delay.

In windy conditions, we achieved about 13 minutes of flight time rather than the 23 minutes stated for each battery charge. Rules say you must be able to see the aircraft with your own eyes so you are probably limited to under 100ha. You could make a reasonable inspection in that time.

Peas and onions from 30m Web

We used the UAV to scout at the LandWISE MicroFarm. Viewed from 30m up, crop variation is immediately obvious.  Pea flowering striping seems to match drill widths. We had variable emergence too so ponder the link. Sprayer runs are visible too.

On the onion side we see thinner areas to the bottom right, and patches where Plant & Food have harvested sample plants as part of our joint OnionsNZ research project.


Viewed from directly overhead we see more of Plant & Food’s research plots, some harvested and some still being followed through to final harvest. The image indicates all these plots are within a reasonably good and even part of the crop.

To the bottom right, a lower wetter area shows lower populations where plants are smaller and fewer made it through establishment.


Dropping to a metre of two above the crop and tilting the camera, we see up close. Because we are seeing what the camera is seeing, we can choose exactly what we want to check and go there immediately.

So we’ve scouted the whole paddock, had a closer look here and there, and if we need to, we can walk to the spots we want to check in detail. The thing is, we know where we should be looking.

Satellite Imagery

A large part of Heretaunga Plains horticulture was photographed for us by satellite at the end of November.

World View 2 satellite coverage of the Heretaunga Plains on 23 November 2105
World View 2 satellite coverage of the Heretaunga Plains on 23 November 2105

Part of our OnionsNZ Variability project, the World View 2 coverage targeted our crop and other onion crops east of Hastings.

By capturing four bands of light, Blue, Green, Red and Near Infrared, we are able to get a “normal” colour image like an aerial photo, and a biomass map using the NDVI index.

The satellite image pixel size in 0.5m x 0.5m, so we get at least two pixels across each onion bed.

World View 2 NDVI image captured 23 november 2015 of MicroFarm onion and vining pea crops
World View 2 NDVI image captured 23 November 2015 of MicroFarm onion and vining pea crops

In the NDVI image, the onion crop is lower left paddock, the vining peas upper right. Red areas indicate low or no biomass, yellow light, green moderate and blue heavy cover. Note however that the value of each colour is slightly different for each crop.

Because the pea canopy is full ground cover while the onions are only roughly half ground cover, we had to use different value bands to see variation within each crop. If we used the same range, either the peas would all be blue, or the onions mostly yellow and red.

The striping effect in the onions is the onion beds. Some adjacent beds have quite different canopy densities.  The red edge around the onions is bare soil and light canopy in the outer beds. The blue area in the centre is influenced by charcoal from an old bonfire site. Even taking these things into account, there is a reasonably large amount of variation in this crop.

Red spots in the pea crop are patches with no plants. The red headlands show light canopy areas and the red strip centre right the irrigator access track. There are three different seed lines of Ashton peas making up the pea crop. These are not discernable in the satellite image. The crop was harvested on 14 December, and there was no significant difference seen in hand harvested plots or in the viner.

Onion Research Underway


After months of planning our OnionsNZ, Plant and Food, Sustainable Farming Fund onion variability project, things are underway at the MicroFarm!

Gerry Steenkamer planted the crop on 2nd August. Rhinestone seed was donated by Vigour Seeds and treated for us by Seed and Field Services. We are very grateful for their support.

An initial residual herbicide application of Dacthal and Stomp was applied. We had a lot of wireweed last year and are keen to get on top of that.

PlantandFoodwebPlant and Food Research staff have established plots for detailed monitoring. They are doing many very detailed individual plant measurements at plot scale. LandWISE is coordinating a number of sensing surveys of the whole crop using a range of technologies.

Plant and Food staff setting up monitoring plots in onions beds. (Wintery southerly)

More details for the research programme and measurements are available on the MicroFarm website.

Plant and Food researchers have developed growth models for a range of crops. This work will help refine their onion growth model, a key to understanding the development and variability in crops. The detailed plot measurements will also be compared with the whole paddock sensor measurements to corroborate and calibrate them.

The first paddock scale surveys have been completed. These give some base information and understanding of the site and it’s variability. Maps as pdfs are available on the MicroFarm website.

One of the first “layers” we can look at is Google Earth imagery – free info on the web! Have a look at your place: use the time slider to view a series of aerial and satellite images captured over recent and not so recent years.


MicroFarm Onion Beds with Winter Cover Crops (as shown on Google Earth image 19 April 2015)
MicroFarm Onion Beds with Winter Cover Crops (as shown on Google Earth image 19 April 2015)

We have posted some of “our place” images and some interpretation here>.

Pagebloomer vsPage Bloomer Associates completed an RTK-GPS survey using Trimble equipment from GPS Control Systems. The data were used to create surface ponding and runoff risk maps.

agriopticsAgriOptics completed a Dual-EM survey in early July. This gave shallow and deep soil information maps. The dry winter means soil had not reached field capacity when the survey was made, so we are a little cautious when interpreting the results. But we risked not getting a survey at all, and by planting in August it had still not rained.  With beds formed and crop planted and emerging, we have no opportunity now to repeat the survey.

AltusUAVAltusUAS has prepared NDVI maps of cover crops from UAV mounted sensors. They will be making repeated measurements as the crop develops. AltusUAS is now using MicaSense technology for efficient multispectral image collection.


ASL_Square_150ASL Software has provided their Cover Map canopy cover measurement tool fitted with high accuracy GPS. We can now use that technology to measure relative plant development and ensure our readings (our mapped data) are located in the correct beds!